Binghamton CS-220

University Spring 2016

Floating Point Arithmetic

Computer Systems, Section 2.4

Binghamton CS-220

University Spring 2016

Abstraction

Anything that is not an integer can be thought of as
<int>.<decimal>

e.g.391.1356
Or can be thought of as
<int> + <numerator>/<denominator>
e.g.
391 + 1356/10000
or 201456 13/16

Binghamton CS-220

University Spring 2016

Leak 1

Numbers may not be exactly precise!

1/3'1=0.33333333333333333333
6.02214129 x 1023 is not an exact Avogadro’s constant

3.14159265358979323846264338327950288419716939937510
is not exactly Tt

Binghamton CS-220

University Spring 2016

Leak 2

On computers, fractional numbers must be represented by bits

Implies base 2
Implies “binary point”

--mmmn
1/2 1/4 1/8 1/16
1 0 1 . 1 0 0 1

CS-220
Spring 2016

Binghamton

University

Leak 3

Almost infinite number of ways to represent floating point numbers

* Implied binary point: 1101 1010 =1101 10.10 = 54.5
 int numerator, int denominator: 0110 1101 / 0000 00010 =109/2

* Scientific notation with int integer, int fraction, int exponent
00000101 /01110011 /00000001
= (5+1/4+1/8 +1/16 +1/128 + 1/256) x 101 =54.4921875

Binghamton CS-220

University Spring 2016

|IEEE Standard

e First convert the number to the form:
value = —1° X SIG X 26*P

* S =0 (positive) or 1 (negative)
1 < SIG < 2 (except for “denormal” numbers)
e —127 < exp < 127
-1038 -1 0 +1 +1038

0127 _1-127 4+1-127 42127

Binghamton CS-220

University Spring 2016

Standard: IEEE 754

* Value Representation:
* Decimal: [+/-]<digit>.<fraction> x 10<exponent> e 5 6,022 x 1023
* Binary: [+/-]1.<fraction> x 2<exponent> e 01,11111110000101...x 278
 Special case for 0, +/- co (INFINITY), “Not a Number” (NAN)

* Bit Representation (float)

s EXP___ __ _ ___ |FRAC

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 bS b4 b3 b2 bl bO

Binghamton CS-220

University Spring 2016

IEEE 754 Special Cases

¢ 4/-0

B_

s 0 o 0o 0o 00 OOOOOOOOTGOTOUOTOTOTOUOUOOTOOT®OUOUOOOQ OODO

» +/-c0 (INFINITY)
s|exp JFRAC__

s 1111111100 UOOUOOOWOTOTGOT OOT OT OT OTGOT O GOTU OU OU OU OWUOW® OFPQO
* +/- Not a Number (NAN)
s EXP_________JFRAC

s 111111110 0SOOOOOOOOOOT1TGOTU OT OU OT OU OTOTOOTOOTOOTGO

Binghamton CS-220

University Spring 2016

IEEE 754 Value vs. BIts

VALUE BITS
* Decimal: -729.6 Sign bit 0=+, 1=-:1
* Binary: 10 1101 1001.1001 1... + FRAC:0110 1100 1100...

« B/Norm: 1/0110 1100 ...x 22/« Biased Exponent:|94+127=136
« Exponent:|9 = 1000 1000

Binghamton CS-220

University Spring 2016

IEEE 754 Value vs. BIts

» Sign bit is 0 for positive, 1 for negative_...arathematically (-1)°

* Except in special cases, fraction = RAC

e Value must be normalized before it can be converte

* Normalization: moving binary point right of first 1 and adjusting expon
* E.g.0b100110.1010x 2°=1.001101010 x 210
* E.g.0b0.0001010110[x 2°] =1.010110x 2+

* In bit form, exponentis >=10
@\'Abstract exponent 1ased# add a cons
« EXP = exponent + 127 = exponent + 27 — 1 = 0x80 + exponent- 1
. exponent = E)%here EXPis 8 bit unsigned binary

Binghamton CS-220

University Spring 2016

Example: Value to Bits

* Value: 3.1416
* Convertto binary: 11.00100100001111....
* Normalize: 1.100100100001111...x 21
* Bits:
* 5= 0 (positive)
e FEXP=1+4+127=128=0b10000000
« FRAC=100100100001111....

s EXP ___________|FRAC_

o100 00 0001 00100100001 1111111100 1
4 0 4 9 0 F F 9

* Bits=0x40490FF9

See Also: xmp float

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_float/

Binghamton CS-220

University Spring 2016

Example: Bits to Value

e Bits: 0x6703eceb
S|EXP |FRAC

co11001110O0O0O0O0OO00 1111101100111 1001 10
6 7 0 3 E C E 6

*5=0,+
 EXP= 0xCE = 206, exponent= 206 -127 =79
 fraction=1.0000011111011...

* Value: + 0b1.0000011111011..x 27°=6.23 x 1043

Binghamton CS-220

University Spring 2016

“Denormal” or “Subnormal” Numbers

o [f EXP bits are zero,

e we do NOT assume fractionstarts with 1.<xxx...>
e we assume it starts with 0.<xxx...>

 Allows numbers smaller than 2-1%6 to be represented

e Smallest Normal: 1.0 x 2-126=1.17549435x10-38
S |EXP___ |FRAC

o o0 o0 oo o060 o010O0O0O0OO0OO0OO0OO0OUOUOTOUOTOUOOTOOTOUOOOO0OTQ 0ODO

 Biggest Denormal: 0.11111.... x 2-147=1.1754942x10-38
S |EXP JFRAC____

cooo0oo0o0o00O0011717111111711111111111111

Binghamton CS-220

University Spring 2016

Multiplying two floating point numbers
Given S,, EXP,, FRAC;; and S,, EXP,, FRAC,, Compute Sp, EXPp, FRACp

Evclusive
OR > S
™)

> EXP, ——

FRAC, — Ab)olit

Binghamton CS-220

University Spring 2016

Adding Two Floating Point Numbers

Given S, EXP;, FRAC;; and S,, EXP,, FRAC,, Compute S_, EXP,, FRAC,
If (S;!=S;,) {S; =1S;, return SUBTRACT(...)}

Sl - SS
EXP, —

! EXP,
EXP, — EXP,

> FRAC,

Binghamton CS-220

University Spring 2016

Dealing with Precision

BAD BETTER
float x=1.0/3.0; #define EPSILON 0.0001
float y=1.0 - (2.0/3.0); float x=1.0/3.0;
if (x==vy){.... float y=1.0 - (2.0/3.0);

if (EPSILON > fabs(x-y)){ ...
}

§

Binghamton CS-220

University Spring 2016

Mixing Integers and Floats

* Converting Float to Int:

* Express Float as Abstract binary, but truncate after binary point
int x = 3.1414,; // xis 3
inty = 6.23e22; // y is garbage... doesn’t fit in 32 bits

* Converting Int to Float:

* Add .0 to integer value
float fx=3; // fx=3.0

e If the result cannot be represented exactly, round up or down

float fy=100000001; // fy=1.0 x 108

Binghamton CS-220

University Spring 2016

Automatic Conversion

* If anything in an operation is double, operation is evaluated using
double precision floating point

* Otherwise, if anything in an operation is float, operation is
evaluated using float

* Conversion also occurs to the target type on assignment and
argument evaluation

Binghamton CS-220

University Spring 2016

Implicit Casting Gotcha

int percent=foo();
int base=bar();

Int resu
Int resu
int result = (base * percent)/100;

int result = base * (percent / (float) 100);
int result = base * (percent / 100.0);

